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While self-consistent linear-combination-of-atomic orbital energy band calculations 
are now routinely performed, quantitative results require very careful application 
of the method, and the novice must be aware of certain pitfalls. This paper discusses 
one of the difficulties encountered: convergence of lattice sums. These sums are sometimes 
extremely slow to converge, but may be obtained by the Ewald technique with a reason- 
able computational effort. This paper presents a set of exact formulas for application 
of the technique which are not readily available in the literature, and demonstrates the 
Ewald approach by applying them in a calculation for the LiF crystal. 

1. INTRODUCTION 

The calculation of electronic energy bands from first principles has been accom- 
plished by several methods, among them the orthogonalized-plane-wave (OPW), 
the augmented-plane-wave (APW) and the linear-combination-of-atomic-orbitals 
(LCAO) methods [ 11. Each of these methods has special advantages, but conceptual 
simplicity and the ease with which energy bands may be generated self-consistently 
throughout the Brillouin zone have stimulated a large number of LCAO studies. 
While an article as recent as 1971 by a reputable, but uninformed, reviewer [2] 
dismissed the LCAO method as “impossible . . . to describe states in a metal or 
semiconductor in or above the valence and conduction bands,” evidence was 
available as early as 1966 that, properly applied, the method may be made quanti- 
tatively as good as others [3]. A glance through the subheading “LCAO Cal- 
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culations” in Physics Abstracts Subject Index reveals a remarkable increase in the 
number of LCAO studies over the past 5 years. 

An enormous literature exists in the application of the LCAO method to mole- 
cular structure. A number of approximate LCAO theories have been evolved, 
primarily by chemists, to handle complex molecules, but these theories are not 
always reliable; when good results are obtained it is often for the wrong reasons. 
A review article by Nicholson summarizes the situation for molecular studies [4]. 

Errors which are important in molecular calculations are sometimes of less 
importance in solid state calculations, but difficulties do arise which are important 
to solids. Among these problems are (1) linear dependence of Bloch basis functions; 
(2) proper evaluation of multicentered integrals; (3) convergence of the basis set; 
(4) evaluation of certain lattice sums. 

Because of instabilities produced by small numerical errors in overlap integrals, 
a near-linear dependence of the LCAO Bloch basis functions may produce negative 
overlap eigenvalues and/or an extreme sensitivity of certain energy eigenvalues to 
small errors in the potential energy integrals. Experienced LCAO theorists eliminate 
or replace the offending basis functions, but usually do not discuss the problem in 
detail in published results [5]. A general discussion with references to earlier work 
is given by Ahlenius et al. [6]. 

Proper evaluation of multicentered integrals is required for quantitative LCAO 
results; it was neglect of certain of these integrals which caused poor results in 
earlier LCAO studies. Introduction of Gaussian orbitals makes possible accurate 
evaluation of these integrals. Neglect of multicentered integrals has been inves- 
tigated in [7,8,9]. As a rule they cannot be neglected in quantitative, first-principles 
work unless great care is taken in estimating their magnitude. 

Convergence of LCAO expansions with respect to the choice of basis orbitals 
has been studied previsouly [lo]. It has been found that (depending upon the 
range of energies desired) solid state LCAO studies may be made without the large 
number of orbitals necessary for accurate atomic and molecular calculations. 
Periodic, rather than asymptotic, boundary conditions are thought to be responsible 
for this simplification. Inclusion of d and f symmetry orbitals permits accurate 
determination of energies in the higher conduction bands. 

It is the purpose of this paper to discuss the fourth difficulty mentioned above- 
convergence of certain lattice sums. This problem is an old one in theoretical physics 
and was first encountered in calculations of cohesive energies of ionic solids. 
Various tricks for doing sums are discussed in the literature and in elementary 
solid state texts. The best general technique was presented by Ewald [l 11. Although 
this technique has been discussed briefly and applied approximately in another 
LCAO calculation [12], it has not been used in all LCAO studies. It is the purpose 
of this paper to give an exposition of the Ewald technique in an LCAO calculation 
and provide formulas not available in the literature which should be of general use. 
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2. THE LCAO EQUATIONS 

While there is no comprehensive review article of the LCAO method as now 
practiced, there is a good discussion, with references to the literature, in the text 
by Callaway [I]. For solid state calculations in perfect crystals, a legitimate LCAO 
must satisfy Bloch’s theorem. This is done by using appropriate phase factors in 
the LCAO, one possible choice being the Bloch function 

bi(k, r) = c eik.Rz$f(r - R,), 

where $i is a known atomic orbital or other localized function centered on site 
Rl , k is the wave vector, and the sum is over all lattice sites Rl . For convenience 
we consider a monatomic crystal; if there is more than one atom per lattice site, 
additional Bloch functions may be constructed which are displaced from RI 
appropriately. Expanding the electron wavefunction in these known Bloch 
functions, the usual secular equation may be obtained from the Schrijdinger 
equation 

/ f&(k) - E(k) &(k)j = 0. 

Here the Hamiltonian matrix elements are given by 

(2) 

Hii(k) = c eik’Rz 
s 

+i*(r) H+& - R,) d3r. (3) 
I 

The overlap matrix elements S&s), may be obtained by replacing H with the 
identity operator. If the Hartree-Fock equations are to be solved, the Hamiltonian 
operator must be replaced with the Fock operator. In Hartree-Fock studies, if 
Gaussian orbitals are used as LCAO basis functions, all multicenter integrals which 
result may be done. However, direct lattice sums must be carefully evaluated using 
an Ewald summation method [9]. Since Hartree-Fock solutions are expected to 
be very expensive and difficult to obtain for heavier elements and compounds, 
it is likely that the Slater approximation will continue to be used for the exchange 
term for years to come. Thus, we consider here the Hartree-Fock-Slater approxi- 
mation. 

With the Slater local exchange approximation it is more economica to Fourier 
analyze the crystal potential, although reciprocal lattice sums which are obtained 
may also be extremely slow to converge. The potential energy integrals still present 
difficulty. One way to evaluate these multicentered integrals to a desired degree 
of accuracy is to use Gaussian- or Slater-type orbitals, 4i , and take advantage of 
the Fourier transform of the crystal potential 

V(r) = 1 V(K,) P*‘*, 
?z 

(4) 
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where K, are reciprocal-lattice vectors. The potential energy term of Eq. (3) 
becomes 

vii(k) = 1 eik’RzI$(R1), (5) 
Z 

where 

and 

vi/irtRz) = c VKJ E&n , Rz) (6) 
la 

Eii(Klz , R,) = 1 I&* e’Kn’r+i(r - R,) d3r. (7) 

The integrals E&K, , R,) may be evaluated exactly with Gaussian orbitals, but 
depending upon the states i andj, the Fourier series may prove intractable, thereby 
necessitating the use of special techniques to accelerate convergence. 

3. THE EWALD PROCEDURE 

Three techniques used to accelerate convergence are (1) the Ewald expansion; 
(2) integration; (3) extrapolation of the Fourier series. The integration technique 
sums the Fourier series to a maximum K, and approximates the rest by an integral 
over the remaining terms [13, 141. The extrapolation technique is based on the 
observation that the Fourier sum after N stars is approximately a linear function 
of l/N [14]. Extrapolation is made to l/N = 0, corresponding to a sum over an 
infinite number of RLV’s. By combining the Ewald expansion with the extra- 
polation technique, a substantial decrease in computational time and more 
accurate quantitative energy band calculations are possible. 

The Fourier transform of the crystal potential is expressed as 

W,) = Vim&J + VeltK,) + ?‘ex(K3, (8) 

where V&K,) is the ionic part of the coulomb potential, V,i(K,) is the electronic 
part of the coulomb potential, and V&K,) is the Fourier transform of the exchange 
potential. 

The convergence rate of the sum in Eq. (6) depends upon both V(K,) 
and E&K, , R,). In fact, the ionic term in T/(K,) given by Eq. (8) greatly retards 
convergence of the sum except for the K, dependence of Eij . Even then the sum 
is extremely slow to converge for some i, j, and Rz . Since the electronic and 
exchange portions converge rapidly, an enhanced convergence rate of the ionic 
part would greatly facilitate the summation in Eq. (6). 
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An Ewald expansion [3, 111 allows cancellation of the ionic portion for large 
valves of K, . In this method a model potential is added to the crystal potential 
so that, in the limit of large K, , the Fourier transforms of the model potential and 
ionic potential cancel. Integrals of the model potential must be evaluated by some 
other method, so that this part may be subtracted off at the end: 

V(r) = - Vm(r) + c [ V(K,) + Vm(K,)] eiK*-r. 
n 

(9) 

Careful choice of Vm enhances the rate of convergence in reciprocal space; when 
balanced by a rapidly computed real-space expression, a decrease in total compu- 
tational time is achieved. One suitable model potential is a Yukawa potential of 
the form 

Vm(r) = 1 (Zle2// r - RI 1) ePtrPR1’, 
1 

where Z1 is the atomic number associated with site RI , and LY is a parameter to be 
selected to enhance convergence. The Fourier transform is 

T/,(K,) = 4rrZe2/Q(012 + Km2), 

where Q is the volume of a unit cell. 

(11) 

Now, since the Fourier transform of the ionic potential is 

T/ion(K,) = -4nZe2/L?Kn2, (12) 

the model potential asymptotically cancels the ionic portion for large K, , as 
desired. For fixed K, , the amount of cancellation between Eqs. (11) and (12) 
is determined by the smallness of IX; however, too small a value will introduce 
convergence problems into Eq. (3). In order to take advantage of this cancellation 
of terms, it is necessary that the three-centered integrals of I/m(r) (now appearing 
in Eq. (3)) be evaluated accurately. Exact expressions for three-centered integrals 
of the model potential in Eq. (10) are given in the Appendix. To our knowledge, 
exact expressions for these multicentered integrals have not been previously applied, 
although one- and two-centered approximations have been applied for other model 
potentials [ 121. 

4. RECIPROCAL-LATTICE SUMS FOR LiF 

In this section formulas given in the Appendix are applied to compute LCAO 
integrals for crystalline LiF. These integrals have previously been obtained by 
Drost and Fry [ 151 in an energy band calculation by summing and using the extra- 
polation technique in Eq. (6). In order to compare with the Ewald results obtained 
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here, the same wavefunctions listed in [15] are adopted, and the same potential is 
used. 

The model potential parameters chosen for LiF are Z = 3 for Li ions, Z = 9 
for F ions, and a = 2.0 reciprocal atomic units for both ions. When a complete 
band structure calculation is made using this model crystalline potential for 
LiF, surprisingly good results are obtained for the lithium type energy bands. 
It appears that LY = 2 does not provide proper screening for the F ions, however, 
since the flourine bands were not accurately reproduced. On the other hand, this 
model potential is valid in performing the first-principles calculations using the 
Ewald procedure. Integral values obtained will be independent of the model 
potential parameters if all sums are converged, but the rate of convergence can be 
greatly influenced by the choice of parameters. 

The criterion used here to select (Y is 

after 6000 reciprocal-lattice stars. It is found that the choice 01 = 2 satisfies this 
condition and, in addition, simplifies some of the numerical work. A smaller value 
of 01 would speed up the reciprocal-lattice sums and slow down the direct-lattice 
sums. Ideally, it would be better to find a value which would minimize the total 
time. While reciprocal-lattice sums require evaluation of many exponential, sine, 
and cosine functions, direct-lattice sums entail exponentials and error functions, 
which are slower. 

For 01 = 2, the direct-lattice sums converge much more rapidly than the reci- 
procal-lattice sums, requiring at most lo-20 shells for a convergence criterion 
of 1O-8 in the direct lattice. A value of 01 as much as an order of magnitude smaller 
might be feasible without making the direct-lattice sums too lengthy; the reci- 
procal-lattice sums would then converge well before 6000 stars. This option was 
not taken here because it is necessary to converge the electronic Fourier coefficients 
to about 1000 stars anyway. 

The rate of convergence of different integral types depends most strongly upon 
the spatial extent of the wave functions used in constructing the LCAO, and the 
separation of the two centers in Eq. (7). The poorest convergence rate occurs for 
the central cell integrals (R, = 0 in Eq. (7)). A comparison of the rate of con- 
vergence for lithium central cell integrals is presented in Table I. The fluorine 
central cell integrals converge more slowly. The convergence rate of all integrals 
improves rapidly for larger R, . 

The advantage of the Ewald method may be seen clearly by comparing the rate 
of convergence of Vo or V, with Vc + VM . While Vc has only two significant 
figures after 5000 stars, Vo + V, after 5000 stars may be used with an accurate 
value for V, obtained from the direct-lattice expressions given in the Appendix 
to obtain a value of Vc accurate to at least five significant figures. In fact, the 

581/23/1-4 



TA
BL

E 
I 

Co
nv

er
ge

nc
e 

of
 

Fo
ur

ier
 

Se
rie

s 
fo

r 
Li

-L
i 

Ce
nt

ra
l 

Ce
ll 

In
te

gr
als

” 

IS
-lS

 

No
. 

RL
V 

St
iX

S 
VC

 
Vi

 
vc

 
+ 

vi 

1o
oo

 
-8

.5
75

95
 

8.
56

53
8 

-0
.0

10
57

7 

5o
oo

 
-8

.6
24

55
 

8.
61

38
1 

-0
.0

10
74

0 

10
,0

00
 

-8
.6

30
33

 
8.

61
95

8 
-0

.0
10

74
8 

20
,0

00
 

-8
.6

33
29

 
8.

62
25

4 
-0

.0
10

75
0 

40
00

 
-8

.6
34

61
 

8.
62

38
6 

-0
.0

10
75

1 

Ex
t. 

-8
.6

36
09

 
8.

62
53

2 
-0

.0
10

75
1 

ls-
2s

 

vc
 

VM
 

vC
 

+ 
VM

 

1.
13

37
5 

-1
.1

64
41

 
-0

.0
30

66
4 

1.
14

13
8 

-1
.1

72
02

 
-0

.0
30

63
8 

1.
14

22
9 

-1
.1

72
93

 
-0

.0
30

63
7 

1.
14

27
6 

-1
.1

73
40

 
-0

.0
30

63
6 

1.
14

29
7 

-1
.1

73
61

 
-0

.0
30

63
6 

1.
14

32
6 

-1
.1

73
80

 
-0

.0
30

63
6 

2s
-2

s 

vc
 

VM
 

vC
 

+ 
VM

 

-0
.7

51
84

2 
0.

81
65

76
 

8 
0.

06
47

34
 

x 

-0
.7

53
04

1 
0.

81
77

71
 

0.
06

47
30

 
5 

-0
.7

53
18

3 
0.

81
79

13
 

0.
06

47
30

 
w 

-0
.7

53
25

7 
0.

81
79

87
 

0.
06

47
30

 
2 

-0
.7

53
29

1 
0.

81
80

21
 

0.
06

47
30

 

-0
.7

53
32

6 
0.

81
80

56
 

0.
06

47
30

 

Ex
ac

t 
8.

62
51

2 
-1

.1
73

81
 

0.
81

80
54

 

Q 
VC

 i
s 

th
e 

to
ta

l 
co

ul
om

b 
in

te
gr

al
, 

an
d 

V,
 

th
e 

m
od

el
 

po
te

nt
ia

l 
in

te
gr

al
 

(in
 

ry
db

er
gs

). 
Th

e 
ro

w 
la

be
le

d 
Ex

t. 
co

nt
ai

ns
 

ex
tra

po
lat

ed
 

es
tim

at
es

. 
Th

e 
la

st
 

ro
w 

co
nt

ai
ns

 
ex

ac
t 

va
lue

s 
ob

ta
in

ed
 

fro
m

 
th

e 
di

re
ct

-la
tti

ce
 

ex
pr

es
sio

ns
. 



EXACT FORMULAS FOR THE EWALD METHOD 49 

difference between the 5000 star value for Vc + V, and the extrapolated value 
may be attributed almost entirely to the electronic coulomb Fourier coefficients 
which have not been treated by the Ewald procedure. A corresponding treatment 
of the electronic contributions would reduce the number of required stars below 
1000. For this purpose a slightly different model potential would be required. 

In order to take advantage of rapid convergence of the Fourier expansion of 
vc + VM 9 it is necessary to have accurate values of integrals of V,(r) given in 
Eq. (10). Expressions for these integrals which are given in the Appendix were 
programmed for computer calculation with attention given to accuracy of the 
lattice sums and evaluation of error functions. The function @* defined in the 
Appendix must be evaluated with special care for large values of the argument of 
the error function. Depending upon the sign of the argument, @* must be evaluated 
using the complementary error function instead of the error function, or enormous 
errors will be introduced as a result of roundoff and multiplication by the expo- 
nential function. Convergence of the lattice sum in Eq. (10) was obtained to eight 
or more significant figures in every case. 

Table II gives the direct-lattice sum for VM and compares Ewald values of various 
integrals with values obtained by summing and extrapolating the Fourier series. 

TABLE II 

Ewald Converged Values for Li-Li and F-F Integrals” 

W-M. Integral Exp. VM vC + vM V, (Ewald) V, (Fourier) V$)(E) 

ooo Li-Li 1 s-l s 0 8.62512 -0.01075 -8.63587 
1 s-2s 0 - -1.17381 -0.03064 1.14318 
2s-2s -1 8.18054 0.64730 -7.53325 

ooo F-F Is-k 2 1.15481 -0.00514 -1.15995 
1 s-2s 1 2.11880 -.12540 + 1.99340 
2s-2s 0 9.40968 1 sJ9920 -8.31048 

310 Li-Li Is-1s -5 3.31189 -.2226 -3.53415 
1 s-2s -3 4.52443 -.30006 -4.82449 
2s-2s -2 4.37521 .32336 -4.05185 

110 F-F Is-ls -5 1.59212 .I4441 - 1.44771 
1 s-2s -3 1.75007 .15935 - 1.59072 
2s-2s -3 2.42786 .47954 - 1.94832 

-8.63609 - 
1.14326 - 

-7.53326 - 

-1.15980 - 
2.00027 - 

-8.31063 - 
-3.53418 -3.44030 
-4.82450 -4.61481 
-4.05184 0.27298 
- 1.44447 -1.44719 
-1.58718 - 1.58960 
- 1.94998 -1.69693 

a Rr is the separation between the wavefunctions; a is the lattice constant. Exp. is the power 
of 10 by which integrals in each row must be multiplied. V, is the direct-lattice integral of the 
model potential, V, + V, and V, are reciprocal-lattice sums for integrals of coulomb plus model 
potential and coulomb potential respectively. VC (Ewald) and V&f?) are Ewald values for Vc 
using exact results for VM and the two-center approximation for V, , respectively. 
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These results are representative of the accuracy which may be achieved for different 
ss integrals; similar behavior occurs with p functions. 

A number of observations may be made from the data presented in Table II. 
The central cell integrals were obtained by summing to 40,000 reciprocal-lattice 
stars, while the integrals evaluated for other separations contained sums out to 
20,000 stars. In both cases the final value listed as Vc (Fourier) is an extrapolation 
of the sum. The reciprocal lattice sum for integrals of V, + V, converged by 
5000 stars to the number of significant figures quoted in the table, so that the value 
quoted for integrals of Vc (Ewald) would remain unchanged upon summing an 
additional 35000 stars. The data in Table I may be used to demonstrate that a value 
of the integral accurate to five significant figures would be achieved using infor- 
mation obtained after only 1000 stars. This is possible, in part, because, not only is 
the Fourier transform of Vc + VM small for large K, , but the sum of integrals of 
the Fourier series of Vc + V’, is also a small quantity. Thus a calculation to 
three significant figures for Vc + V M , when combined with a value of V, accurate 
to five significant figures, provides five significant figures for Vc . Depending on 
the model potential parameters, this may not always be the case. 

Table II indicates good agreement between the Fourier series method and the 
Ewald method for integrals involving functions which are long-ranged; but integrals 
with one short-ranged orbital differ. The conclusion obtained is that, while extra- 
polation of the Fourier series can yield three or four significant figures, the time 
required is more than 100 times as long as the Ewald procedure to provide a com- 
parable accuracy. 

The last column in Table II gives the value of the coulomb integral obtained by 
using a two-center approximation to simplify evaluation of the direct-lattice sums 
for integrals of V, . This approximation has often been made to simplify first- 
principles calculations and was made in a previous application of the Ewald 
procedure [12]. For the model potential and LCAO functions employed here, this 
approximation is seen to introduce significant errors into the coulomb integral. 
For nearer Li-Li neighbors the errors were found to be as large as 0.5 rydbergs 
for the 2~2s integrals. For a good choice of I’, the three-centered expressions 
may be summed rapidly, so the two-center approximation is neither appropriate 
nor necessary. 

5. CONCLUSION 

A model potential has been found which may be used effectively in the Ewald 
procedure to obtain reciprocal-lattice sums. It is characterized by a Fourier 
transform which is finite at K = 0, and approaches the Fourier transform of a 
point ion for large K. Integrals of the model potential, including all multicentered 
terms, may be evaluated analytically if Gaussian LCAO basis functions are 
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employed. By appropriate choice of parameters in the model potential it is possible 
to obtain rapid convergence in both reciprocal-lattice and direct-lattice sums. 
For a desired degree of accuracy, this Ewald procedure reduces the total compu- 
tational time by as much as two orders of magnitude. 

APPENDIX 

In the Ewald procedure it is necessary to evaluate integrals of the model potential 
of the type 

l= J exp(--ol, I r-A~2)(exp(--ol~r-C~)/~r-C~)exp(--ol,~r-B~2)dr (Al) 

for s-type Gaussian orbitals centered on sites A and B, and the model potential 
on site C. Similar integrals for p and d symmetries may be obtained from the s 
integrals by differentiation with respect to an appropriate parameter once an 
expression for the ss integral is obtained. The ss three-center integral may be com- 
puted exactly by using properties of the Gaussian orbitals to reduce it to a two- 
center integral. The two-center integral is then evaluated in spheroidal coordinates 
for any model potential which may be expressed as a product of a Gaussian or 
exponential function times a rational function of 1 r I. Expressions for ss, sp, and 
pp integrals are given here. Details are given in [16]. 

The center of the product of two s type Gaussian orbitals, one at A, the other 
at B, is D = (ollA + a,B)/(or, + Q). Define R = I D - C 1, RAB = I B - A I. 
Then including the proper normalization factor for the Gaussian orbitals and 
defining 

C,, = Z(2/7~)“~ (a51012)3’4 exp( - ol,cu,R;Jfl), 

C,, = 2(201~/~)“‘” (128a25/~3)1’4 exp(--cll,ar,Ri,/fl)), 

C,, = Z(128/~~)l’~ (01~01~)~‘~ exp(-qa2R;B/j3), 

B = % + a-2 9 Ai = Bi - Ai , vii = DE - Ci , 

N = (TT~‘~//W~) exp(cu2/4p), 

M = (27r/p) exp(-/?R2), 

@* = exp(faR)[erf(/W2R f (~~/2jW3 ? 11, 

the ss three-center integral for the model potential is 

Is, = C,,(N/R)[@+ + @-I. 

642) 

(43) 
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The sp integrals are, with s on A, p on B, 

I,& = C,,{(M/R2) 7ji - (N/2pR3)[(@‘- + Qq2~,R2& + qi) - (@' - @-I aR7lJl. 
(A41 

Define 

x* = @‘,‘[~cu~cx,R~~~~~ - (3 ‘f 3orR + a2R2)qiqj - (2a1R2 i 2cia,R3)hi7ji 

+ (2012R2 T 2~o1,R~)hiqj + (R2 F aR3 - 2pR4)6ij], (A51 

where aij is the Kronecker delta. The pp three-center result is 

lpipj = - C,,{W/PR2)[(P + (3/2R2)) qiyj + a,xjTi - Gbrlj - @A 

+ (N/4/32R5)[~+ + x-l}. W) 

If the sites A, B, and C are such that the integral reduces to one or two centers, 
it is necessary to obtain integrals expressions as a limit of the three-center 
expressions given above. The formulas are simple, but will not be quoted here. 

REFERENCES 

1. J. CALLAWAY, “Quantum Theory of the Solid State, Part B,” Academic Press, New York, 
1974. 

2. J. M. ZIMAN, in “Solid State Physics” (F. Seitz and D. Turnbull, ed.), Vol. 26, pp. l-101, 
Academic Press, New York, 1971. 

3. E. E. LAFON AND C. C. LIN, Phys. Rev. 152 (1966), 579. 
4. B. J. NICHOLSON, in “Advances in Chemical Physics” (I. Prigogine and S. A. Rice, Eds.), 

Vol. 18, pp. 249-312, Interscience, New York, 1970. 
5. R. N. EUWEMA, G. G. WEPFER, G. T. SURRATT, AND D. L. WHILHITE, Phys. Rev. B9 (1974), 

5249. 
6. T. AHLENIUS, J.-L. CALALS, AND P.-O. L&VDEN, J. Phys. C 6 (1973), 1896. 
7. A. B. KUNZ, Phys. Rev. 162 (1967), 789. 
8. F. C. CASE, N. DESAI, S. B. Cox, AND J. L. FRY, to appear. 
9. R. N. EUWEMA, D. L. WILHITE, AND G. T. SURRATT, Phys. Rev. B 7 (1973), 818. 

10. J. E. SIMMONS, C. C. LIN, D. F. FOUQUET, E. E. LAFON, AND R. C. CHANEY, .I. Phys. CS 
(1975), 1549. 

11. P. P. EWALD, Ann. Phys. 64 (1921), 253. 
12. R. C. CHANEY, T. K. TUNG, C. C. LIN, AND E. E. LAFON, J. Chem. Phys. 52 (1970), 361. 
13. J. LANGLINAIS AND J. CALLAWAY, Phys. Rev. B5 (1972), 124. 
14. N. E. BRENER AND J. L. FRY, Phys. Rev. B6 (1972), 4016. 
15. D. M. DROST AND J. L. FRY, Phys. Rev. B 5 (1972), 684. 
16. S. B. Cox, Master’s Thesis, University of Texas at Arlington, 1973. 


